14 research outputs found

    Extremal problems in graphs

    Get PDF
    In the first part of this thesis we will consider degree sequence results for graphs. An important result of Komlós [39] yields the asymptotically exact minimum degree threshold that ensures a graph GG contains an HH-tiling covering an xx-proportion of the vertices of GG (for any fixed xx ∈ (0, 1) and graph HH). In Chapter 2, we give a degree sequence strengthening of this result. A fundamental result of Kühn and Osthus [46] determines up to an additive constant the minimum degree threshold that forces a graph to contain a perfect HH-tiling. In Chapter 3, we prove a degree sequence version of this result. We close this thesis in the study of asymmetric Ramsey properties in Gn,pG_n,_p. Specifically, for fixed graphs H1,...,Hr,H_1, . . . , H_r, we study the asymptotic threshold function for the property Gn,pG_n,_pH1,...,HrH_1, . . . , H_r. Rödl and Ruciński [61, 62, 63] determined the threshold function for the general symmetric case; that is, when H1==HrH_1 = · · · = H_r. Kohayakawa and Kreuter [33] conjectured the threshold function for the asymmetric case. Building on work of Marciniszyn, Skokan, Spöhel and Steger [51], in Chapter 4, we reduce the 0-statement of Kohayakawa and Kreuter’s conjecture to a more approachable, deterministic conjecture. To demonstrate the potential of this approach, we show our conjecture holds for almost all pairs of regular graphs (satisfying certain balancedness conditions)

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    IP Things as Boundary Objects: The Case of the Copyright Work

    No full text

    ACKNOWLEDGMENTS AND REFERENCES

    No full text

    George Golding Kennedy correspondence.

    No full text
    Senders A, 1872-191
    corecore